- Suppose you have a square matrix A. Let A represent a linear transformation that is multiplied by a vector \vec{v} (i.e. let A be a transformation matrix upon another vector \vec{v}).
 - o If $A\vec{v}$ is parallel to \vec{v} (i.e. the transformed vector is parallel to the original vector), then \vec{v} is an **eigenvector** of A.
 - By convention, $\vec{v} \neq \vec{0}$.
 - o Consequently, the constant factor by which the magnitude of the vector has changed is the **eigenvalue** associated with \vec{v} and A.
 - o i.e. $A\vec{v} = \lambda \vec{v}$, where \vec{v} is the eigenvector and λ is the associated eigenvalue.
- Characteristic polynomial = $det(A \lambda I)$
 - O Where does this come from?
 - $A\vec{v} = \lambda \vec{v} \Rightarrow A\vec{v} \lambda \vec{v} = \vec{0} \Rightarrow (A \lambda I)\vec{v} = \vec{0}$, where *I* is the identity matrix.
 - $(A \lambda I)\vec{v} = \vec{0}$ iff $\det(A \lambda I) = 0$. (Assume $\vec{v} \neq \vec{0}$)
 - $det(A \lambda I)$ is the **characteristic polynomial** of A.
 - o For a two-by-two matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.
 - $\bullet \det(A \lambda I) = (a \lambda)(d \lambda) bc = \lambda^2 (a + d)\lambda + ab bc = 0$
 - $\lambda^2 (a+d)\lambda + (ab-bc) = 0$
 - Characteristic equation can be written as $\lambda^2 T\lambda + D = 0$.
- How to find eigenvalues and eigenvectors:
 - 1. Find the characteristic polynomial of *A* (i.e. find $det(A \lambda I)$).
 - 2. Solve $det(A \lambda I) = 0$ to obtain a set of eigenvalues.
 - o 3. For each eigenvalue, find an associated eigenvector by substituting back into the equation $(A \lambda I)\vec{v} = \vec{0}$ and solving the system of equations.
 - The system of equations should be redundant (i.e. each individual equation in the system should be linearly dependent on all the others).
 - Note: Any eigenvector will do, as every eigenvector associated with a specific eigenvalue will be linearly dependent. But for practical purposes, choose the most reduced eigenvector.
- The sum of the eigenvalues is the trace, the product of eigenvalues is the determinant
- **Defective matrix**: an $n \times n$ matrix A that does not have n independent eigenvectors
- For a triangular matrix, the eigenvalues are the diagonal entries.
- If λ and \vec{v} are corresponding eigenvalues and eigenvectors for A, then λ^k and \vec{v} are corresponding eigenvalues and eigenvectors for A^k .
- A is invertible iff 0 is not an eigenvalue of A.
- Applications
 - o Solving systems of differential equations
 - o Transforming images (e.g. scaling, rotating, etc.)
 - Vibration analysis
 - o Computational chemistry: Schrödinger equation, molecular orbital theory